Susceptible-infected-recovered epidemics in dynamic contact networks.

نویسندگان

  • Erik Volz
  • Lauren Ancel Meyers
چکیده

Contact patterns in populations fundamentally influence the spread of infectious diseases. Current mathematical methods for epidemiological forecasting on networks largely assume that contacts between individuals are fixed, at least for the duration of an outbreak. In reality, contact patterns may be quite fluid, with individuals frequently making and breaking social or sexual relationships. Here, we develop a mathematical approach to predicting disease transmission on dynamic networks in which each individual has a characteristic behaviour (typical contact number), but the identities of their contacts change in time. We show that dynamic contact patterns shape epidemiological dynamics in ways that cannot be adequately captured in static network models or mass-action models. Our new model interpolates smoothly between static network models and mass-action models using a mixing parameter, thereby providing a bridge between disparate classes of epidemiological models. Using epidemiological and sexual contact data from an Atlanta high school, we demonstrate the application of this method for forecasting and controlling sexually transmitted disease outbreaks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epidemic thresholds in dynamic contact networks.

The reproductive ratio, R0, is a fundamental quantity in epidemiology, which determines the initial increase in an infectious disease in a susceptible host population. In most epidemic models, there is a specific value of R0, the epidemic threshold, above which epidemics are possible, but below which epidemics cannot occur. As the complexity of an epidemic model increases, so too does the diffi...

متن کامل

Message passing and moment closure for susceptible-infected-recovered epidemics on finite networks.

The message passing approach of Karrer and Newman [Phys. Rev. E 82, 016101 (2010)] is an exact and practicable representation of susceptible-infected-recovered dynamics on finite trees. Here we show that, assuming Poisson contact processes, a pair-based moment-closure representation [Sharkey, J. Math. Biol. 57, 311 (2008)] can be derived from their equations. We extend the applicability of both...

متن کامل

Concurrency-induced transitions in epidemic dynamics on temporal networks

Social contact networks underlying epidemic processes in humans and animals are highly dynamic. The spreading of infections on such temporal networks can differ dramatically from spreading on static networks. We theoretically investigate the effects of concurrency, the number of neighbors that a node has at a given time point, on the epidemic threshold in the stochastic susceptible-infected-sus...

متن کامل

Individual-based approach to epidemic processes on arbitrary dynamic contact networks

The dynamics of contact networks and epidemics of infectious diseases often occur on comparable time scales. Ignoring one of these time scales may provide an incomplete understanding of the population dynamics of the infection process. We develop an individual-based approximation for the susceptible-infected-recovered epidemic model applicable to arbitrary dynamic networks. Our framework provid...

متن کامل

Mitigation of epidemics in contact networks through optimal contact adaptation.

This paper presents an optimal control problem formulation to minimize the total number of infection cases during the spread of susceptible-infected-recovered SIR epidemics in contact networks. In the new approach, contact weighted are reduced among nodes and a global minimum contact level is preserved in the network. In addition, the infection cost and the cost associated with the contact redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 274 1628  شماره 

صفحات  -

تاریخ انتشار 2007